

Explosive Destruction System Update

John E. Didlake and Brent L. Haroldsen Sandia National Laboratories, Livermore, CA

Kim Haulenbeek Sandia National Laboratories, Albuquerque, NM

Presentation to the 17th International Chemical Weapons Demilitarisation Conference,

4-6 June 2014

London, England

Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a Lockheed Martin Corporation, for the United States Department of Energy under contract DE-AC04-94AL85000.

This work was sponsored by the US Army.

Review of CWD 2013 Presentation

- The CWD 2013 presentation included:
 - Design details of an EDS Phase 3 system that was delayed
 - A Universal Munition Storage Container
 - A request to upgrade EDS Phase 2 Unit 3 for
 - One day processing
 - Destruction of leaking 4.2 inch mortars, 105mm projectiles, and 155mm projectiles at Pueblo Chemical Agent-Destruction Pilot Plant, PCAPP
 - A request to build a new skid-mounted EDS Phase 2 system for Assembled Chemical Weapons Alternatives, ACWA; also, for use at PCAPP

CWD 2014 Agenda

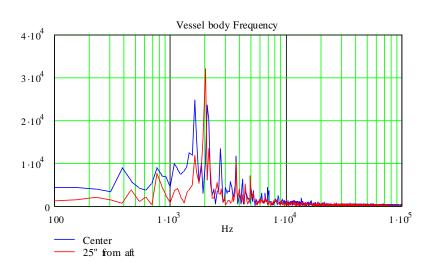
- The retrofit of the EDS Phase 2 Unit 3 system designated as EDS Phase 2 Retrofit or P2R.
- Explosive opening subsystem upgrades for P2R at PCAPP.
- The new EDS Phase 2 system designated P2A for Phase 2 ACWA.

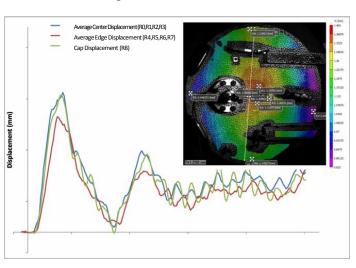
Step 1 was to explosively validate a new vessel.

The vessel (V26) on P2U3 is replaced with an new ASME,
 Section 8, Division 3, Code Case 2564, 9 pound TNT, vessel.

The P2U3 is taken to Sandia, New Mexico, to explosively validate

the new vessel.



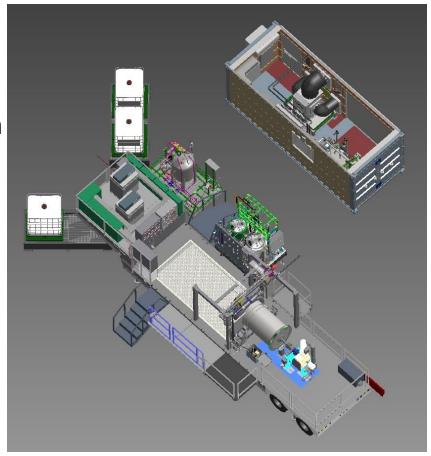


Five explosive tests were conducted at Sandia, New Mexico.

- Test 1: 9 lbs of bare C-4 = 11.25 lbs TNT or 1.25 times over test
- Test 2: 7.2 lbs of bare C-4 = 9 lbs TNT for comparison to Test 3
- Test 3: 9 lbs of TNT for comparison to Test 2
- Test 4: 6 pack test without bursters = distributed 3 lbs charge test
- Test 5: 6 pack test with bursters = distributed 7.3 lbs charge test

For additional information attend Lee Clemon's presentation.

The next step was to disassemble parts of P2U3 at Sandia, Livermore.


- P2U3 arrived in Livermore at the end of July 2013
- All the hardware on the reagent supply wing was removed.
- New system layouts were developed.
- New hardware and vessel modifications identified

Next was to modify, reassemble and add to the P2R system.

- Vessel modifications
 - Steam input
 - Nut runner door closure system
 - New sample system
- Modify Reagent Supply Subsystem
- New Boiler-Chiller Container
- New Effluent System
- New Human Machine Interface Readouts

Vessel removed and shipped to Grayloc Products in January 2014.

- P2U3 vessel, V26, shipped to Grayloc Products
 - an additional steam port in door
 - required "R" stamp
- Clamp issues and copper deposits in V26 dictated exchange with P2 vessel, V25, for P2R.
 - V25 port modification and "R" stamp
 - V26 will be used for P2A with port, 3-piece clamp, & "R" mods

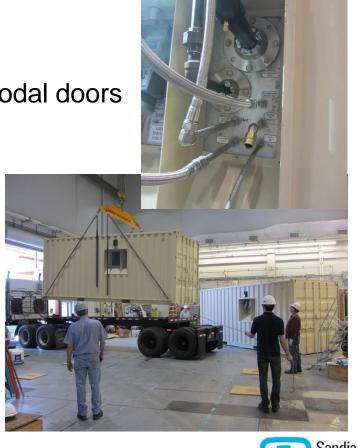
The modified vessel has several new features.

- Steam/liquid line attached to door via two rotating unions.
- Nut runners driven by pneumatic wrenches.
- Upgraded sample system.

The reagent supply is bigger and faster.

 Reagent (MEA) is supplied from a 220 or 330 gallon IBC on a secondary container to the 65 gallon heated tank on the trailer.

Larger, faster pumps to supply the vessel.



The Boiler-Chiller is a modified intermodal container.

- Modified 20-foot intermodal container
 - Insulated
 - Heated/air conditioned
 - Man door, sliding barn door, intermodal doors
 - Interior & exterior lights
 - Unistrut mounting points
- Inputs
 - 480 Volts / 200 amps
 - Water
 - Instrumentation

The Boiler-Chiller Container (BCC) provides utilities to the P2R.

- A 60kW boiler provides steam to the vessel.
- A 10K BTU/hr chiller provides cooling to a jacketed 65 gallon tank food-grade propylene glycol loop.
- A transformer provides 208/110 Volts to the container via a distribution panel.
- The BCC can provide 480 Volts to the P2R.

The effluent (drain) subsystem has been improved.

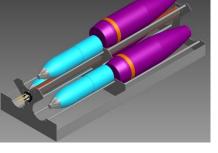
- Two 330-gallon plastic IBCs are used for effluent.
 - One for MEA effluent
 - One for rinse water

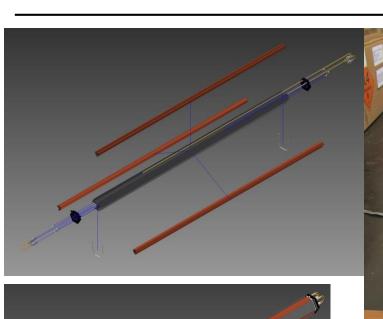
 A 125-gallon intermediate stainless steel tank is used to hold hot (90-95 C) rinse water until it is cool enough to transfer to the plastic IBC.

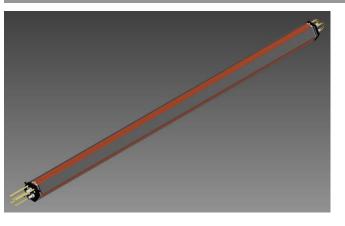
System monitoring is improved by Human Machine Interface, HMI.

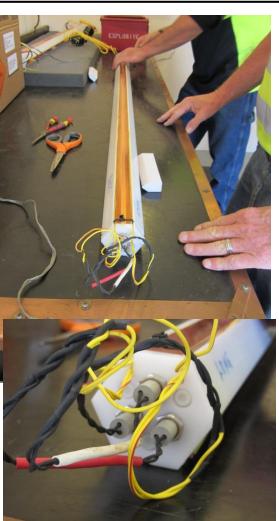
- HMI are located:
 - At the processing area of the trailer
 - At the intermediate tank skid
 - Personal Decon Station
 - Command Post
- They provide
 - Tank/IBC levels
 - Tank temperatures
 - Air Operated Valve
 Status Open/Closed
 - Warnings/Alarms
- Reduce crew communication to CP

Bottom line is P2R shipped on May 14, 2014

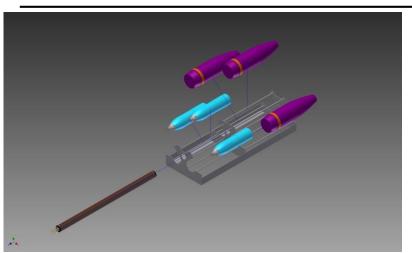

- P2R is now at Aberdeen Proving Ground, Maryland, for training and testing.
- Ultimate plan is to be ready to start processing at the Pueblo Chemical Agent-destruction Pilot Plant EDS in September 2014.

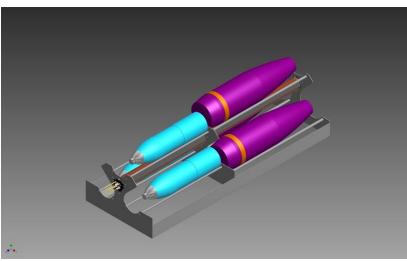



The Explosive Opening Subsystem, EOS, continues to evolve.

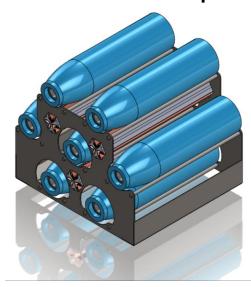

- Copper Linear Shaped Charges (CLSC) now aligned back-to-back in a central modular array.
- CLSC array can be pre-configured and inserted into the munition holder prior to shutting the door.
- Munition holders for:
 - 6 each 4.2-inch mortars
 - 6 each 105mm projectiles
 - 6 each 155mm projectiles
 - 6 each combination of 4.2 and 105 munitions
 - 3 each 155mm with 3 each 4.2 or 3 each 105 munitions

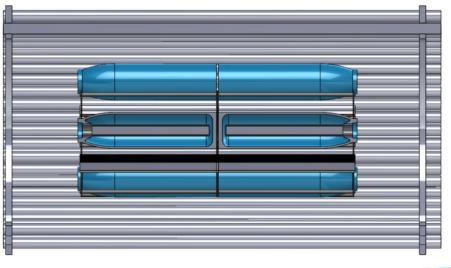
CLSC and detonators fit into a hexagonal assembly.



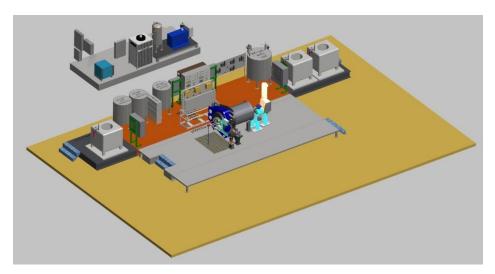


Munitions are positioned in the holder and the CLSC assembly inserted.


Photos of a three 4.2-inch mortars and three 105mm projectiles test.

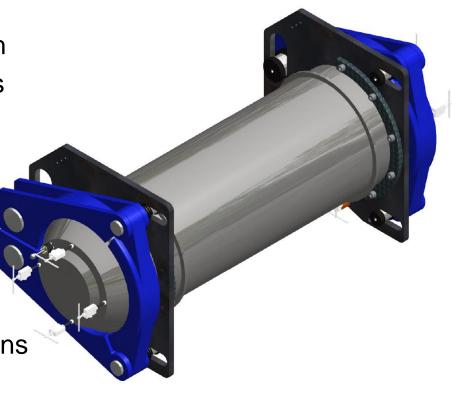


- Advanced CLSC design give 30% improvement in jet.
- Single three jet CLSC reduces net explosive weight.
- Seven packs and fourteen pack designs for smaller munitions are possible.



Next up is the P2A system for ACWA.

- Designated as the P2A, the new system will:
 - include the P2R upgrades, except
 - incorporate an existing, ASME Code Case 2564 P2 vessel modified with a three-piece clamp (5-minute door closing) and
 - on skids versus a trailer.
- Deliver to the Army in the first quarter of calendar year 2015.



Skid layout

The P3 design is still on hold.

- 316 stainless steel
- 120 inch (305 cm) internal length
- 5.625 inch (14.29 cm) thick walls
 - Necked down at clamps
 - Existing P2 Grayloc seals
- Door at both ends
- 3-piece clamp design
- Improved hinge design
- Capacity for one M55 or
- 12 to 28 or more smaller munitions
- ASME Code Case 2564
- ~35,000 to 40,000 pounds (16,000 to 18,000 kg)

Acknowledgements

Development of the Sandia designs and technologies are funded and directed by the US Army

Sandia California

John Didlake

Thomas Raber

Daniel Golling

Brent Haroldsen

Robert Crocker

Mickey Clemon

Scott Ferko

et. al.

Sandia New Mexico

David Cole

W. Venner Saul

Jerome Stofleth

Edward Vieth

Lloyd Payne

Peter Montoya

Mark Naro

Kimberly Haulenbeek

et. al.

US Army

Allan Caplan

William Adams

Steve Bird

et al.

<u>Other</u>

Bud Salsbury

